wshobson / service-mesh-observability
Install for your project team
Run this command in your project directory to install the skill for your entire team:
mkdir -p .claude/skills/service-mesh-observability && curl -L -o skill.zip "https://fastmcp.me/Skills/Download/449" && unzip -o skill.zip -d .claude/skills/service-mesh-observability && rm skill.zip
Project Skills
This skill will be saved in .claude/skills/service-mesh-observability/ and checked into git. All team members will have access to it automatically.
Important: Please verify the skill by reviewing its instructions before using it.
Implement comprehensive observability for service meshes including distributed tracing, metrics, and visualization. Use when setting up mesh monitoring, debugging latency issues, or implementing SLOs for service communication.
1 views
0 installs
Skill Content
---
name: service-mesh-observability
description: Implement comprehensive observability for service meshes including distributed tracing, metrics, and visualization. Use when setting up mesh monitoring, debugging latency issues, or implementing SLOs for service communication.
---
# Service Mesh Observability
Complete guide to observability patterns for Istio, Linkerd, and service mesh deployments.
## When to Use This Skill
- Setting up distributed tracing across services
- Implementing service mesh metrics and dashboards
- Debugging latency and error issues
- Defining SLOs for service communication
- Visualizing service dependencies
- Troubleshooting mesh connectivity
## Core Concepts
### 1. Three Pillars of Observability
```
┌─────────────────────────────────────────────────────┐
│ Observability │
├─────────────────┬─────────────────┬─────────────────┤
│ Metrics │ Traces │ Logs │
│ │ │ │
│ • Request rate │ • Span context │ • Access logs │
│ • Error rate │ • Latency │ • Error details │
│ • Latency P50 │ • Dependencies │ • Debug info │
│ • Saturation │ • Bottlenecks │ • Audit trail │
└─────────────────┴─────────────────┴─────────────────┘
```
### 2. Golden Signals for Mesh
| Signal | Description | Alert Threshold |
|--------|-------------|-----------------|
| **Latency** | Request duration P50, P99 | P99 > 500ms |
| **Traffic** | Requests per second | Anomaly detection |
| **Errors** | 5xx error rate | > 1% |
| **Saturation** | Resource utilization | > 80% |
## Templates
### Template 1: Istio with Prometheus & Grafana
```yaml
# Install Prometheus
apiVersion: v1
kind: ConfigMap
metadata:
name: prometheus
namespace: istio-system
data:
prometheus.yml: |
global:
scrape_interval: 15s
scrape_configs:
- job_name: 'istio-mesh'
kubernetes_sd_configs:
- role: endpoints
namespaces:
names:
- istio-system
relabel_configs:
- source_labels: [__meta_kubernetes_service_name]
action: keep
regex: istio-telemetry
---
# ServiceMonitor for Prometheus Operator
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: istio-mesh
namespace: istio-system
spec:
selector:
matchLabels:
app: istiod
endpoints:
- port: http-monitoring
interval: 15s
```
### Template 2: Key Istio Metrics Queries
```promql
# Request rate by service
sum(rate(istio_requests_total{reporter="destination"}[5m])) by (destination_service_name)
# Error rate (5xx)
sum(rate(istio_requests_total{reporter="destination", response_code=~"5.."}[5m]))
/ sum(rate(istio_requests_total{reporter="destination"}[5m])) * 100
# P99 latency
histogram_quantile(0.99,
sum(rate(istio_request_duration_milliseconds_bucket{reporter="destination"}[5m]))
by (le, destination_service_name))
# TCP connections
sum(istio_tcp_connections_opened_total{reporter="destination"}) by (destination_service_name)
# Request size
histogram_quantile(0.99,
sum(rate(istio_request_bytes_bucket{reporter="destination"}[5m]))
by (le, destination_service_name))
```
### Template 3: Jaeger Distributed Tracing
```yaml
# Jaeger installation for Istio
apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
spec:
meshConfig:
enableTracing: true
defaultConfig:
tracing:
sampling: 100.0 # 100% in dev, lower in prod
zipkin:
address: jaeger-collector.istio-system:9411
---
# Jaeger deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: jaeger
namespace: istio-system
spec:
selector:
matchLabels:
app: jaeger
template:
metadata:
labels:
app: jaeger
spec:
containers:
- name: jaeger
image: jaegertracing/all-in-one:1.50
ports:
- containerPort: 5775 # UDP
- containerPort: 6831 # Thrift
- containerPort: 6832 # Thrift
- containerPort: 5778 # Config
- containerPort: 16686 # UI
- containerPort: 14268 # HTTP
- containerPort: 14250 # gRPC
- containerPort: 9411 # Zipkin
env:
- name: COLLECTOR_ZIPKIN_HOST_PORT
value: ":9411"
```
### Template 4: Linkerd Viz Dashboard
```bash
# Install Linkerd viz extension
linkerd viz install | kubectl apply -f -
# Access dashboard
linkerd viz dashboard
# CLI commands for observability
# Top requests
linkerd viz top deploy/my-app
# Per-route metrics
linkerd viz routes deploy/my-app --to deploy/backend
# Live traffic inspection
linkerd viz tap deploy/my-app --to deploy/backend
# Service edges (dependencies)
linkerd viz edges deployment -n my-namespace
```
### Template 5: Grafana Dashboard JSON
```json
{
"dashboard": {
"title": "Service Mesh Overview",
"panels": [
{
"title": "Request Rate",
"type": "graph",
"targets": [
{
"expr": "sum(rate(istio_requests_total{reporter=\"destination\"}[5m])) by (destination_service_name)",
"legendFormat": "{{destination_service_name}}"
}
]
},
{
"title": "Error Rate",
"type": "gauge",
"targets": [
{
"expr": "sum(rate(istio_requests_total{response_code=~\"5..\"}[5m])) / sum(rate(istio_requests_total[5m])) * 100"
}
],
"fieldConfig": {
"defaults": {
"thresholds": {
"steps": [
{"value": 0, "color": "green"},
{"value": 1, "color": "yellow"},
{"value": 5, "color": "red"}
]
}
}
}
},
{
"title": "P99 Latency",
"type": "graph",
"targets": [
{
"expr": "histogram_quantile(0.99, sum(rate(istio_request_duration_milliseconds_bucket{reporter=\"destination\"}[5m])) by (le, destination_service_name))",
"legendFormat": "{{destination_service_name}}"
}
]
},
{
"title": "Service Topology",
"type": "nodeGraph",
"targets": [
{
"expr": "sum(rate(istio_requests_total{reporter=\"destination\"}[5m])) by (source_workload, destination_service_name)"
}
]
}
]
}
}
```
### Template 6: Kiali Service Mesh Visualization
```yaml
# Kiali installation
apiVersion: kiali.io/v1alpha1
kind: Kiali
metadata:
name: kiali
namespace: istio-system
spec:
auth:
strategy: anonymous # or openid, token
deployment:
accessible_namespaces:
- "**"
external_services:
prometheus:
url: http://prometheus.istio-system:9090
tracing:
url: http://jaeger-query.istio-system:16686
grafana:
url: http://grafana.istio-system:3000
```
### Template 7: OpenTelemetry Integration
```yaml
# OpenTelemetry Collector for mesh
apiVersion: v1
kind: ConfigMap
metadata:
name: otel-collector-config
data:
config.yaml: |
receivers:
otlp:
protocols:
grpc:
endpoint: 0.0.0.0:4317
http:
endpoint: 0.0.0.0:4318
zipkin:
endpoint: 0.0.0.0:9411
processors:
batch:
timeout: 10s
exporters:
jaeger:
endpoint: jaeger-collector:14250
tls:
insecure: true
prometheus:
endpoint: 0.0.0.0:8889
service:
pipelines:
traces:
receivers: [otlp, zipkin]
processors: [batch]
exporters: [jaeger]
metrics:
receivers: [otlp]
processors: [batch]
exporters: [prometheus]
---
# Istio Telemetry v2 with OTel
apiVersion: telemetry.istio.io/v1alpha1
kind: Telemetry
metadata:
name: mesh-default
namespace: istio-system
spec:
tracing:
- providers:
- name: otel
randomSamplingPercentage: 10
```
## Alerting Rules
```yaml
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
name: mesh-alerts
namespace: istio-system
spec:
groups:
- name: mesh.rules
rules:
- alert: HighErrorRate
expr: |
sum(rate(istio_requests_total{response_code=~"5.."}[5m])) by (destination_service_name)
/ sum(rate(istio_requests_total[5m])) by (destination_service_name) > 0.05
for: 5m
labels:
severity: critical
annotations:
summary: "High error rate for {{ $labels.destination_service_name }}"
- alert: HighLatency
expr: |
histogram_quantile(0.99, sum(rate(istio_request_duration_milliseconds_bucket[5m]))
by (le, destination_service_name)) > 1000
for: 5m
labels:
severity: warning
annotations:
summary: "High P99 latency for {{ $labels.destination_service_name }}"
- alert: MeshCertExpiring
expr: |
(certmanager_certificate_expiration_timestamp_seconds - time()) / 86400 < 7
labels:
severity: warning
annotations:
summary: "Mesh certificate expiring in less than 7 days"
```
## Best Practices
### Do's
- **Sample appropriately** - 100% in dev, 1-10% in prod
- **Use trace context** - Propagate headers consistently
- **Set up alerts** - For golden signals
- **Correlate metrics/traces** - Use exemplars
- **Retain strategically** - Hot/cold storage tiers
### Don'ts
- **Don't over-sample** - Storage costs add up
- **Don't ignore cardinality** - Limit label values
- **Don't skip dashboards** - Visualize dependencies
- **Don't forget costs** - Monitor observability costs
## Resources
- [Istio Observability](https://istio.io/latest/docs/tasks/observability/)
- [Linkerd Observability](https://linkerd.io/2.14/features/dashboard/)
- [OpenTelemetry](https://opentelemetry.io/)
- [Kiali](https://kiali.io/)